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Abstract. Shallow cavity flows driven by horizontal temperature gradients are analysed over a range of Rayleigh 
numbers R and Prandtl numbers o-, where R is comparable in size to the aspect ratio L(->I). Eigenvalue calculations 
show the existence of a critical Prandtl number trr, below which the parallel core-flow structure is destroyed for 
Rayleigh numbers R > Re(o" ). For other Rayleigh numbers and Prandtl numbers the horizontal scale of influence of 
the end walls of the cavity is determined. 

1. Introduct ion 

Convective motions driven by temperature gradients not aligned with the gravitational field 
were first studied in connection with large-scale geophysical disturbances (Hadley [1]; 
Jeffreys [2]; Defant [3]; Stern [4]). The lateral extent of the flow is a key factor in many 
modern applications including certain crystal growing techniques (Hurle [5]; Hurle et al. [6]; 
Gill [7]), cooling systems for nuclear reactors (Boyack and Kearney [8]), dispersion of 
pollutants in river estuaries (Cormack et al. [9]), and in solar energy collectors (Bejan and 
Rossie [10]). Cavity flows driven by lateral heating have been investigated experimentally by 
Rossby [11], Imberger [12], Ostrach et al. [13], Bejan et al. [14], Simpkins and Dudderar  
[15] and Simpkins and Chen [16]. These flows driven by horizontal temperature gradients 
heat up the fluid near the hot wall causing it to rise and flow across the upper half of the 
cavity to the top of the cold wall. There it cools and descends to the bottom of the wall, and 
it then completes the circuit along the bottom half of the cavity. The movement of fluid 
around the cavity is achieved in such a way that there is an odd symmetry about the centre 
(Gill [17]). Numerical studies of this motion have been discussed by Quon [18], Cormack et 
al. [19], Shiralkar and Tien [20] and Kuo et al. [21]. At high Rayleigh numbers experiments 
in shallow cavities indicate that the central region of the core is almost stagnant (Bejan et al. 
[14], Simpkins and Chen [16], whilst vertical boundary layers at the ends of the cavity 
occasionally exhibit local internal eddies (Simpkins and Dudderar [15]). The core region is 
dominated by a horizontal shear flow for lower, although still large, Rayleigh numbers but 
this can be replaced by a multicellular structure if the Prandtl number of the fluid is small 
enough (Hart  [22, 23], Gill [7]). 

The present study is concerned with the basic steady flow in the cavity and with the 
solution near the vertical walls. The horizontal boundaries are assumed to be conducting. 
The companion problem for insulated boundaries has already been discussed by Daniels et 
al. [24]. The Rayleigh number R based on height (see (2.10) below) is O(L) ,  where L(~>I) is 
the aspect ratio of the cavity, so that nonlinear effects are significant. The local solution near 
the vertical walls involves eigensolutions that generally decay away into the core region; 
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these eigensolutions are involved in turning the flow in the end region, but one is associated 
with a stationary transverse mode of instability (Hart [22, 23]) which can present itself at low 
PraBdtl numbers. The parallel core flow is destroyed by this spatial oscillation, and as the 
Rayleigh number increases the instability is forced into the system as a smooth transition 
emanating from the ends of the cavity. This paper determines the range of Prandtl numbers 
and Rayleigh numbers for which this imperfect bifurcation occurs. It also determines the 
lateral extent of the end zones for general Prandtl numbers and Rayleigh numbers. A 
complete numerical solution of the end zone problem has not been attempted. 

2. Formulation of the problem 

The flow domain is a rectangular cavity of height h and length I. The end walls are 
maintained at fixed but different temperatures which generate steady two-dimensional 
motions within the cavity. The governing equations for the flow, taking buoyancy into 
consideration, are the Navier-Stokes equations, 

u* Ou* bu* 1 Op* u(  Ozu* OEu* ) 
Ox---- T + w* - -  - - -  + + - -  (2.1) OZ* p* OX \ OX .2 OZ .2 " 

u* Ow* aw* 1 Op* { a2 w * a2w*'~ 
Ox* + w* - - -  + + - g (2.2) az* p* az* oz . 2 ]  ' 

the heat equation, 

u* aT*  aT* [ O2T * d2T* '] 
Ox* + w* - -  = (2.3) K\ 7 + oz 

and the continuity equation 

o ( p . . . ) +  o 
ax oz--; (t,* w*) = o ,  (2.4) 

where (x*, z*) are Cartesian co-ordinates, x* in the direction along the horizontal bound- 
aries and z* in the direction up the end walls with the origin at the bottom of the cold wall 
(x* -- 0). u* and w* are the velocity components in the directions x* and z* respectively and 
T* is the temperature with T* -- T~ on the cold wall; p* is the pressure, p* is the density, v 
is the kinematic viscosity, K is the thermal diffusivity and g is the acceleration due to gravity. 

It is assumed that 

p* = Po(1-  f l ( T * -  T~))  , (2.5) 

where P0 is the density at T* = T~ and fl is the coefficient of thermal expansion. In line with 
the Oberbeck-Boussinesq approximation the variation of density with temperature is 
assumed to only affect the buoyancy term in (2.2). Introducing Cartesian co-ordinates (2, E) 
made dimensionless with respect to the height h, the stream function t~ made dimensionless 
with respect to the thermal diffusivity K and the temperature T made dimensionless with 
respect to the temperature difference AT' applied between the two end walls, (2.1) to. (2,4) 
can be rewritten as 



0 f  1 0(~26, 6) 
V4 6 -- R 0)7 - cr 007, g) ' 

o(¢, 6) 
o(~, i )  ' 
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(2.6) 

(2.7) 

where ~2 is the Laplacian operator. Here the pressure has been eliminated and 

a -  06 , =  _a J, 
OZ ' 0 £  " 

(2.8) 

The non-dimensional parameters are the Prandtl number 

(2.9) 

and the Rayleigh number 

R = f i g  A T '  h 3 / v K  . (2.1o) 

The rigid end walls are impermeable and at constant temperature, so that 

6 =  0 6 = T = 0  o n £ = 0  
0.7 

and 

(2.11) 

a6 6=g =o, 

where 

l ? = l  o n Y = L ,  (2.12) 

L = t / h  (2.13) 

is the cavity aspect ratio. The horizontal walls are rigid and conducting, so that 

06 6=~=0,  f=Z on~-0,1. (2.14) 

Gill [17] noted that the governing equations and boundary conditions possess the centrosym- 
metry properties 

6(.f,  ~; L, R, o') = 6 ( L  - 2, 1 - 27; L,  R, or), 

T(Y, z~; L, R, o-) = 1 - T(L - ~, 1 - 27; L, R, o-), 
(2.15) 

which allows half the flow domain to be considered. 
This work is concerned with the limit L--~ ~ such that 

R ,  = R / L  = 0(1)  (2.16) 

for which the flow contains strong non-linear effects in end regions near the vertical walls. 



102 R . J .  Gargaro 

3. Core region 

Away from the ends of the cavity appropriate independent variables are 

= . f / L  , z =  z. . (3.1) 

Expanding formally the stream function and the temperature,  

t}(2, ~; R,, L, ~r) = ~o(~, z; R,,  o-) + L-11~I(~, z; R1, Or) A- O ( L - 2 )  , 

T(X, Z; R, ,  L, or) = To(~, z; R, ,  o-) + L - I T I ( ~ ,  z; R, ,  o') + O(L  2), 
(3.2) 

and substituting into (2.7) gives at O(1), 

0 4 't~0 R10'I 'o 
OZ 4 " ~  = 0 , 

02To 

OZ 2 
- 0 .  

The use of Gill's centrosymmetry relations and the boundary conditions (2.12) gives 

(3.3) 

(3.4) 

To ~ ~ 
R 1 t~o = ~-~ z2(1 - z) 2 " (3.5) 

At O ( L - ' ) ,  using the expressions found for To and ~o, 

02TI R 1 
Oz 2 - ~  z ( 1 -  z ) ( 1 - 2 z ) ,  

04~l RI 0T1 
0Z 4 ~ ' - =  O. 

Using the same conditions as above gives 

(3.6) 

(3.7) 

z Z 4 z 3 z ) (3.8) 
~ 1 = 0 ,  T I = R 1  12-0 48 + 72 720 " 

Further terms associated with inverse powers of L in (3.2) are zero so that 

= R , F ( z ) ,  T =  ~ + L - X R , G ( z )  (3.9) 

to within corrections which are exponentially small as L--> o0 (see Section 4) and where 
F(z )  = (z2/24)(1 - z) 2 and 

5 4 3 Z Z Z Z 
G ( z )  - 120 48 + 72 720" (3.10) 

The results (3.9) are only valid if a consistent solution can be found in end-regions near each 
vertical wall. Regions in (R1, or) parameter space for which parallel core structures exist are 
determined in later sections. 
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4. End region 

At each end of the cavity is an approximately square region in which the flow is turned. The 
flow has a structure near £ = 0 defined by 

~(2, Z; R,,  L, or) = O(x, z; R , ,  or) + - . . ,  

7"(3f, Z; R1, L, o') = L-1T(x, z; R1, or) + "'" 
(4.1) 

where 

x = 2 ,  z = £ .  (4.2) 

qJ and T satisfy (2.6) and (2.7) with (~0, T, x, z, R1) replacing (~, T, £, ~, R). Boundary 
conditions in this end region are 

oO 
- o x - T = O  o n x = 0 ,  (4.3) 

0q~ 0 T x onz  0,1 (4.4) 
O =  Oz ' 

The end region solution matches with the core solution given that ~0 and T have the following 
limiting behaviours 

~ RIF(Z  ) + O(e - '~x ) ,  (4.5) 

T ~ x + R~G(z )  + O(e-~X), (4.6) 

as x--* 0% where R e ( a ) >  0. The decaying parts of the stream function and temperature in 
(4.5) and (4.6) have the forms 

~b(z; R1, or) exp( -a (R1,  or)x), O(z; R 1, or) exp( -a (R1 ,  or)x), (4.7) 

respectively, where ~b, 0 and a are determined by the sixth-order boundary value problem 

4; v + 2a26" + 0/46 + o l R l O  = aR~(F ' "6  - F ' ( q b " +  az6))/or ,  (4.8) 

0"+ a20 - 6 ' =  a R I ( G '  6 - F'O) , (4.9) 

with 

0 = ~ b = ¢ ' = 0  o n z = 0 , 1 .  (4.10) 

The decomposition (4.7) follows from the fact that the decaying parts of qJ and T satisfy a 
pair of linear equations whose coefficients depend only on z, implying that the dependence 
on x is of exponential form. 

The forms in (4.7) will be generated by the conditions (4.3) so that the end region will 
have a solution consistent with the core region solution only if a triply infinite set of 
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eigenvalues a with R e ( a )  > 0 exists. If  the eigenvalue a ( R  1 , or) corresponds to the eigenfunc- 

tions ~b(z; R1, or) and O(z; R1, or), the boundary  value prob lem implies that - a ( R 1 ,  Or) 
corresponds to Oh(1 - z; R 1, tr) and -O(z ;  R1, or). Also if a is complex then the complex 

conjugate or* (R1, or) corresponds to th* (z; R1, or) and 0* (z; R1, or). At tent ion can therefore  
be restricted to the first quadrant  of the a plane. 

The roots can be counted by reference to the structure at R 1 = 0, which is not dependent  
on the Prandtl number ,  and which has a triply infinite set of eigenvalues with R e ( a )  > 0. At  

R 1 = 0, (4.8) becomes 

~b io + 2a2th " + 0/4(/) = 0 

with ~b = ~b' = 0 on z = 0, 1 and (4.9) becomes 

(4.11) 

0"+ aZO - ~b' = 0 (4.12) 

with 0 = 0 o n z = 0 ,  1. 
Equations (4.11) and (4.12) indicate that there are real eigenvalues defined by trivial 

solutions of  (4.11), that is, ~b-=0 for all a ,  and f rom (4.12) 

a = n T r ,  O = s i n n T r z ,  n = l , 2  . . . .  (4.13) 

Complex eigenvalues are found from the non-trivial solutions of (4.11) and occur in two 

non-combining even and odd groups 

~b = sin a z  - a z  cos a z  + (a cot a - 1)z sin a z  (4.14) 

where a is the solution of 

sin2a - a 2 = 0 .  (4.15) 

The even eigenfunctions correspond to the solutions of sin a + a = 0, tabulated by Robbins  
and Smith [25] 

a = 4.2124 + 2.2507i, 10.713 + 3.1032i, . . . , (4.16) 

and the odd ones to the solutions of sin a - a -- 0, tabulated by Hil lman and Salzer [26] 

a = 7.4977 + 2.7687i, 13.900 + 3 . 3 5 2 2 i , . . . .  (4.17) 

5. Numerical results 

A fourth-order  R u n g e - K u t t a  scheme with Newton iteration was used to solve the eigenvalue 
problem numerically. Solutions were calculated for fixed or by incrementing R~ using the 
value of a at the previous R 1 as an initial estimate.  By use of this method the roots could be 

traced f rom the known values at R~ = 0. 
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Figures 1 and 2 show the first branches of the real and complex eigenvalues for infinite 
Prandtl number;  each branch maintains a positive real part for all values of R~, which 
indicates that the end-region solution matches in a consistent manner  to the core region 
solution. The decay of the real eigenvalues as Ra--* ~ indicates the expansion of the end 
region into the core at large R~. 

Figure 3 shows the first few branches of the real eigenvalues at various finite Prandtl 
numbers; for or = 1 there is little change from the infinite Prandtl number  case and for 
o, = 0.1 the decay of the eigenvalues as R~ ~ ~ is still apparent. 

Figure 4 shows the first complex branch at Prandtl numbers of 0.1 and 1.0. For the o- = 0.1 
branch the real part of a becomes zero at a critical value of R~ = R l c  and the root  bifurcates 
into two imaginary branches for R~ > R l c .  This type of bifurcation occurs for o- ~< ~ = 0.27 

~o. 

o(, 

4_ 

o 1 ~ ~ ~ 
R i  x l o  3 

Fig. 1. First three branches of the real eigenvalue o~ for infinite Prandtl number. 
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Fig. 2. First three branches a, b, c of  the complex eigenvalue a for  infinte Prandtl number, 
. . . .  imaginary part. 

real part, 
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Fig. 3. F i r s t  t h r e e  b r a n c h e s  o f  t h e  r e a l  e i g e n v a l u e  a f o r  ~ = 0 .1 ,  - - - -  , a n d  ~ = 1 , - -  

oc  

5 .  

• b 

iiiiiiiiiiiiiiiiiiiiiiiiii 
0 t E 3 4 

R I x l o  3 

Fig. 4. C o m p l e x  e i g e n v a l u e s  a f o r  f i n i t e  P r a n d t l  n u m b e r ,  - -  

(b) ~ = 1.0. 
• , R e a l  p a r t ,  - - - - ,  I m a g i n a r y  p a r t ;  (a) cr = 0 .1 ,  

with R e ( a )  zero for R 1 I> Rio(o- ). Spatial oscillations f rom the end zone then enter  the core 

and Rlc(o-) may be identified with the critical Rayleigh number  for the transverse mode  of 
stationary instability of the parallel core flow, first examined by Har t  [22]. Figure 5 shows the 
critical Grashof  number  

Gr  c = Rlc/o" ( 5 . 1 )  

as a function of or. 
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(3- LOGIO 

Fig. 5. Comparison of critical Grashof numbers: (a) Daniels et al. [24]. (b) Present work. (c) Kuo et al. [21]. (d) 
Hart [22]. 

6. Asymptotic results for large R 1 

( i)  Decaying roots 

The real branches in Figs 1 and 3 have the asymptotic form 

a - a o / R  1 as R1----> ~ ,  (6.1) 

where a o is the eigenvalue defined by the boundary value problem 

4, ̀ 0 + aoO : (ao/O-)(F" 4, - F'cb") ,  (6.2) 

0 " -  qb'= ao(G'cb - F'O) , (6.3) 

with 

~b = ~b'= 0 = 0  o n z = 0 , 1 .  (6.4) 

Numerical solutions calculated by a Runge-Kutta scheme are shown in Fig. 6. Real 
solutions exist for all Prandtl numbers, and the leading branches approach the limiting values 

% = 1852, 11052, 30919 as o - - - ~ ,  (6.5) 
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Fig. 6. E i g e n v a l u e s  a o a s  a f u n c t i o n  o f  P r a n d t l  n u m b e r ,  - - ,  R e a l  p a r t ,  - - - - ,  I m a g i n a r y  p a r t .  

found by taking the right-hand side of (6.2) equal to zero. Wholly imaginary roots exist for 
o- < 0.24. 

(ii) Finite roots 

Numerical calculations suggest that asymptotic solutions exist in which a remains finite as 
R 1 -+ ~ and purely imaginary solutions may correspond to the upper branches of the neutral 
curves in Fig. 4. For such solutions 

a - - i ~ ,  ~b--~(z) ,  0 - -0(z )  asR 1-+oo, (6.6) 

where d is real. Substitution into (4.9) gives 

= G'~b/F' (6.7) 

and therefore (4.8) yields 

~" + ((o'G'  - F ' F ' " ) / F  '2 - ~2)£~ ~--'0. (6.8) 

A local solution of (4.8) and (4.9) consistent with (4.10), close to the lower surface of the 
cavity, requires that 

q~=O(z*) ,  0 = O ( z  A-l) a s z - + 0 ,  (6.9) 

where h =  ½{1 + (1 + 4o-)1/2}. It is also required that ~ = 0  at z = 1. From (6.8) i t  can be 
shown that 
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[ 1[ (z-+y)/2 1 
8~K_+ z - ~  as z - ~  ~ 0 ,  (6.10) 

where K+ are arbitrary constants, and 

y = (1 - 14~/5) 1/2 . (6.11) 

It may be argued that for o-< 5/14 the stronger of the two singularities must be avoided 
i.e. K =0 .  If the reverse were true then a solution subject to (6.9) would have to be 
constructed in z < ~ with K_ ~ 0 and the symmetry of (6.8) implies a similar behaviour 
would occur in z > ½. The structure near z = ½ is then a critical layer defined by 

~)-1/3~ 
Z = ½ + ( R  x (6.12) 

q ~ - ( R 1 ~  ) ( ' /6)( '-Y)qb(z),  

0 ~ (R 1 ~)(1/6)(1-y)O(.ff) , 
(6.13) 

where it is assumed that ¢ = 0(1). Substitution back into (4.8) and (4.9) gives 

70" 
576o-qb vi - 24i~(1 + o')qb ~v - 48iqb . . . .  Z2~,, _ ~ (I) = 0 ,  (6.14) 

which is independent of 5. The solution of (6.14) must satisfy 

dp ~ K_[~.I (1/z)( ' -~)  as I~l--* oo . (6.15) 

Daniels, Blythe and Simplins [24] considered a similar problem to (6.14) and (6.15) and 
were able to show that non-zero solutions would not generally exist, contradicting the 
original assertion and suggesting that the outer solution must satisfy 

K_ = 0 .  (6.16) 

Figure 7 shows the numerical solution of (6.8) subject to (6.9) and (6.16). To distinguish 
between the two singular forms in (6.10), the solution is rewritten as 

= Z ( 1 / 2 ) ( 1 - Y ) f ( ~ )  (6.17) 

where 

Z =  ~ - z ,  ~ '=Z ~', 

f , , +  ~.2(1-r)/~ T-z[  16(1_--Y)2(2~ "2/r - 1) 24 
[ 7(1 - 4~'2/'~) 2 + 

(6.18) 

(1 - 4(: / , )  f f2}f= 0.  (6.19) 

The boundary conditions derived from (6.9) and (6.16) are 

f = 0  at ~" =0 ,  2 -~ .  (6.20) 
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4_ 

f 

0"- XIO - I  

Fig. 7. Eigenvalues  d for 0 < ~r < 5/14. 

The numerical solution was computed from ff = 0 to ff = 2 -r  using an additional initial 
condition f '  = 1 at ff = 0; iterative adjustment of ~ enabled a solution to be found for any 
Prandtl number 0 <  or <5 /14 .  The influence of the central singularity can be seen by 

replacing (6.16) by 

K+ = 0 .  (6.21) 

The resulting upper branch of Fig. 7 is obtained by use of the conditions 

f = l ,  f ' = 0  a t f f = 0 ,  f = 0  a t f f = 2  - r .  (6.22) 

The form of the solution for d, on the lower branch of Fig. 7, can be found analytically for 
small Prandtl number,  where 

d -  ¢rd o as o---~0. (6.23) 

The corresponding eigenfunction is 

= q~o + o-q~, + o-2~2 + . - . ,  (6.24) 

and substitution into (6.8) gives at leading order 

F~b o- ' - "  F'"~o = 0  . (6.25) 

The boundary conditions on q~0 obtained from (6.9) and (6.16) are 

~o = O(z) as z ~  0 ,  (6.26) 

and 



_ 1  
~ 0 - K +  z - 1  as z ~ - + 0  

giving, without loss of generality, 

(~0 ~ F p  " 

At order 0-, 

F~bl+'-" G' -F '"q~ 1 = 0 ,  

and the boundary conditions on ~1 are 

~ l = O ( z l o g  ez) a s z ~ 0  

and 

7 
K+ z 1 log e - 2 z 

1 
~1  ~ ~ -  - -  ~ z as - ~ ~ 0 .  

Writing 

~ 1  = F'H(z)  , 

(6.29) reduces to 

d [F,ZH, ] - G '  
dz 

and use of (6.30) and (6.31) gives 

H = 1 log e Z2(1 -- Z) 2 + constant. 
(1 _ z)7 I L l  

At order 0 -2 , 

F'2~)'~ + G -'  - F'F"~b 2 - rr"30lo=O,-2 

and the boundary conditions on q~2 are 

~2 O(z  2 = IOgeZ ) a s z ~ 0  

and 

1 < 1 
~2- -~  K+ z - ~  z - ~  as - ~  ~ 0 .  

A consistent solution of (6.35) exists only if 

f f /2  ( ~  F ' 2 -  G ' H )  dz = O, 
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(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 
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Table 1. Numerical  solution of (6.19), (6.20) for small cr 

tr 6 ti/tr 

0.20 0.98708 4.93542 
0.15 0.71227 4.74846 
0.10 0.46044 4.60443 
0.05 0.22447 4.48946 
0.01 0.04413 4.41296 

Asymptot ic  ~/ t r  = 4.39545. 

which gives 

1 
ti 0 = ~ ~ - - - 4 . 3 9 5 4 5 .  

This result compares well with the numerical solution, as shown in Table 1 and Fig. 7. 

7. Discussion 

Convective motions driven by a horizontal temperature  gradient in a shallow cavity with 
conducting walls have been analysed for the limit L ~ ~ with R 1 = R/L = O(1),  over a range 

of Rayleigh numbers R 1 and Prandtl numbers or. 
The numerical solution to the relevant eigenvalue problem indicates the existence of a 

critical Prandtl number  or = 0.27 below which the parallel core flow is destroyed by multiple 
eddies which are forced into the core if the Grashof  number  Gr  = R1/tr is greater than the 
critical value Grc(tr  ) shown in Fig. 5. As or---> 0 the results show that Gr  c approaches a value 
of about 8 × 103 consistent with, but a little higher than, the critical Grashof  number  of 7980 
for o -<  0.02 found by Har t  [22]. Figure 5 shows that the results also compare well with the 
work done by Kuo, Korpela,  Chait and Marcus [21] whose stability analysis was based on the 
use of Chebychev polynomials and collocation. The insulating boundaries case was studied 
by Daniels, Blythe and Simpkins [24] and their results for the critical Grashof  number  as a 
function of Prandtl number  are also included in Fig. 5. The Grc curves for the insulating and 
conducting boundaries approach the same limit as o----~0, consistent with Hart 's  [22] 
arguments that the critical Grashof  number should be the same because the thermal 

contributions become negligible in this limit. 
At  general Prandtl number,  the decay of the end zone solution is reduced as the Rayleigh 

number is increased, causing the structure set out in Sections 3 and 4 to break down. Figure 
6 identifies the e-folding decay length 

X ~ a o l R l  (7.1) 

associated with this process, with a 0 = 1.8 x 103 for o-/> 0.2. 
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